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The locations of multicritical points on many hierarchical lattices are numerically investigated by the renor-
malization group analysis. The results are compared with an analytical conjecture derived by using the duality,
the gauge symmetry, and the replica method. We find that the conjecture does not give the exact answer but
leads to locations slightly away from the numerically reliable data. We propose an improved conjecture to give
more precise predictions of the multicritical points than the conventional one. This improvement is inspired by
a different point of view coming from the renormalization group and succeeds in deriving very consistent
answers with many numerical data.
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I. INTRODUCTION

The problem of spin glass, which is one of the most chal-
lenging subjects in statistical physics, has been analyzed ex-
tensively by the mean field theory but has not been suffi-
ciently understood for finite dimensional systems �1–3�.
Most approaches to the difficult problem of finite dimen-
sional spin glasses rely on approximate techniques, numeri-
cal simulations, and phenomenological theories �3�.

A lot of important facts have been established by such
approaches to finite dimensional spin glasses. Nevertheless,
it is very important to derive exact or rigorous results to
check the validity of approximate approaches. A useful
method along this line is the gauge theory, which enables us
to find a special subspace of a phase diagram for spin-glass
models known as the Nishimori line �4,5�. In this subspace,
we can calculate the exact value of the internal energy and
evaluate the upper bound of the specific heat. It is shown
rigorously that the Nishimori line runs through the ferromag-
netic phase and the paramagnetic phase. Moreover, it is ex-
pected that the multicritical point, where the phase bound-
aries between the spin-glass phase, paramagnetic phase, and
ferromagnetic phase merge, is located on the Nishimori line
�6�.

One of the recent developments using the gauge theory is
a conjecture of the exact location of the multicritical point
for spin glasses, especially in two dimensions �7,8�. The pre-
diction is very close to numerical results �9�, and is consid-
ered to be very useful in the analysis of numerical data for
critical exponents.

The essential part to derive the conjecture consists of du-
ality and the replica method as explained below. Duality is a
useful tool to obtain the exact location of the transition point
for spin systems without disorder. Because the spin-glass
models have quenched disorder, we cannot directly apply the
duality to spin-glass models. Nevertheless, by the replica
method, the problem reduces to nonrandom systems to which
we can apply duality. We then assume that a single relation
gives the multicritical point similarly to the case of the du-
ality relation on the transition point for the pure Ising model

in two dimensions. This is one of the hypotheses on the
conjecture. In addition we expect that the above-mentioned
relation for the multicritical point is satisfied even when the
replica number goes to zero to analyze systems with
quenched randomness.

The validity of assumptions to derive the conjectures as
mentioned above has not been established rigorously. Never-
theless, the conjecture has given predictions very close to
many independent numerical results �7–11�. However, Hinc-
zewski and Berker found several examples by the exact
renormalization analysis in which, especially for the hierar-
chical lattices, the conjecture did not give good predictions
�12�. It is expected generally that the renormalization group
analysis on hierarchical lattices gives exact results. Therefore
such discrepancies found by the renormalization group
analysis on the hierarchical lattice should be taken seriously
for the conjecture even though the amount of discrepancies is
small. If these discrepancies are genuine, we have to con-
sider the reason why there are cases for which the conjecture
does not work well. Conversely, we would like to know why
the conjecture always gives accurate results if not exact. It is
also desirable to improve the conjecture to predict more pre-
cise location of the multicritical point.

These observations have given us motivations to investi-
gate many more hierarchical lattices to check if the locations
of the multicritical points are away from predictions by the
conjecture. We employ the technique by Nobre �13� to ex-
amine the phase transitions and to estimate the locations of
the multicritical points on several hierarchical lattices. Then,
we discuss reasons why there are such discrepancies for the
cases of hierarchical lattices and propose a method to im-
prove the conjecture to derive more precise locations of mul-
ticritical points.

The presented paper is organized as follows. In Sec. II, we
review previous results for the location of the multicritical
point and show some examples of the discrepancies between
the conjecture and the numerical results. We explain the
properties of hierarchical lattices in Sec. III. In Sec. IV, we
explain Nobre’s method to examine the phase transition and
then estimate the values of the locations of the multicritical
points for several cases. We find some discrepancies between
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the conjecture and the numerically estimated results here.
Therefore we have to consider the reason why there are some
cases that the conjecture does not work well. The conjecture
relies on the replica method, and we assume that the analyti-
cal continuation of the replica number to zero does not cause
trouble as in most cases studied so far. Therefore we inves-
tigate the replicated systems for the �J Ising model in Sec.
V. Then we consider improvement of the conjecture in Sec.
VI and show successful results to predict more precise loca-
tions of the multicritical points in Sec. VII. In Sec. VIII,
discussions and future outlook are given.

II. MODEL AND CONJECTURE

We study the random-bond Ising model, defined by the
Hamiltonian,

H = − �
�ij�

Jij�i� j , �1�

where �i is the Ising spin taking values �1, and Jij denotes
the quenched random coupling. In this paper, we consider
two types of distribution functions for Jij, the �J model and
the Gaussian model.

For this random-bond Ising model on two-dimensional
lattices, a method to predict the precise location of the mul-
ticritical point has been proposed �7–11�. This method relies
on the duality and the replica method applied to spin-glass
models with gauge symmetry. It has been considered to be a
conjecture for the exact location of the multicritical point for
systems satisfying certain conditions like self-duality. Ac-
cording to this conjecture, the exact location of the multi-
critical point for the �J Ising model on the square lattice is
determined by a single equation as follows:

− p log2 p − �1 − p�log2�1 − p� =
1

2
, �2�

where p is the probability of Jij =J�0 for the �J Ising
model. The left-hand side of this equation is the binary en-
tropy and will be written as H�p�. We obtain the value pc
=0.889 972 ��0.8900�, solving this equation. This result is
in reasonable agreement with existing numerical results as
shown in Table I.

It is also possible to obtain the location of the multicritical
point for the Gaussian model with the average J0 and the
variance J2 from the following equation �7,8�:

	
−�

�

dJijP�Jij�log2
1 + exp�− 2�Jij�� =
1

2
, �3�

where P�Jij� is the Gaussian distribution function, and � sat-
isfies the condition of the Nishimori line �=J0 /J2. We will
write the left-hand side of this equation as HG�J0 /J2�. The
solution of Eq. �3� for the Gaussian model is J0 /J2

=1.021 770, which is also compared with the existing nu-
merical result in Table I. It is not easy to determine from
these data whether the conjecture actually gives the exact
result.

Equation �2� applies also to models defined on other self-
dual lattices. The phase diagram of a self-dual hierarchical

lattice has been numerically investigated by Nobre �13�. Ac-
cording to his result, the multicritical point is located near
the conjectured value, pc=0.8902�4�.

In addition, the conjecture also works on mutually dual
pairs of lattices �10�. In this case, we obtain the relationship
between the locations p1 and p2 of the multicritical points for
the mutually dual pairs as follows:

H�p1� + H�p2� = 1. �4�

This relation is supported by a consistent result within its
numerical error bar for the �J Ising model on the triangular
and hexagonal lattices as H�p1�+H�p2�=1.002�3� �14�,
where p1 and p2 denote the location of the multicritical point
on the triangular p1=0.835 806 and the hexagonal p2
=0.932 704 lattices, respectively �11�.

However, there are cases in which the relation �4� and the
numerical results for three mutually dual pairs of hierarchical
lattices show derivations by large amounts close to 2%,
H�p1�+H�p2�=1.0172,0.9829,0.9911 �12�. The technique
by Hinczewski and Berker in Ref. �12� is based on an exact
calculation through the renormalization group analysis on
hierarchical lattices.

These results motivated us to study other hierarchical lat-
tices to see if the conjecture gives exact solutions. If it does
not, the next question is why the prediction of the conjecture
falls very close to numerical estimates in all cases. To verify
these points, we evaluated the relation �4� and its Gaussian
version for five other mutually dual pairs of hierarchical lat-
tices. In addition, we also reexamined Eq. �2� for the �J
Ising model and Eq. �3� for the Gaussian model on several
self-dual hierarchical lattices including the case investigated
by Nobre.

III. HIERARCHICAL LATTICE

In this section, we introduce the hierarchical lattice and
renormalization group on it �20–22�. The renormalization
group analysis on the hierarchical lattice is an exact tech-
nique to obtain the location of the transition point, though it
is difficult to obtain such an exact solution on regular lat-
tices.

TABLE I. Comparisons between the conjectured values and the
numerical results. SQ denotes the square lattice, TR means the tri-
angular lattice, and HEX expresses the hexagonal lattice.

Type Conjecture Numerical result

SQ�J pc=0.889 972 �7,8� 0.8900�5� �14�
0.8894�9� �15�
0.8907�2� �16�
0.8906�2� �17�
0.8905�5� �18�
0.8907�4� �19�

SQ Gaussian J0 /J2=1.021 770 �7,8� 1.02098�4� �19�
TR�J pc=0.835 806 �11� 0.8355�5� �14�

HEX�J pc=0.932 704 �11� 0.9325�5� �14�
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In the present paper, we investigate phase transitions for
three mutually dual pairs of hierarchical lattices shown in
Fig. 1 studied by Hinczewski and Berker �12� and an addi-
tional five pairs shown in Fig. 2. We also examine phase
transitions in several self-dual hierarchical lattices in Fig. 3.
The scale factor b denotes the length of the unit of the hier-
archical lattice. We examine phase transitions and estimate
the location of the multicritical point, for b=2–6 on the self-
dual hierarchical lattices.

The renormalization group on these hierarchical lattices
consists of two basic steps, which are known as the bond
moving and decimation as in Fig. 4. The black bold bond
denotes the renormalized bond after bond moving, and the
white bold bond expresses the renormalized bond after deci-
mation. Construction of a hierarchical lattice starts from a
single bond, and we iterate the process to substitute the
single bond with a unit cell of more complex structure as in
Fig. 5.

Because a hierarchical lattice has an iterative structure
consisting of unit cells as shown in Figs. 1–3, we again ob-
tain the same structure after we trace out degrees of freedom
on each unit cell in renormalization group calculations,

which are the inverse processes of the construction. There-
fore our task is to evaluate recursion relations of couplings
on bonds, which relate sets of the couplings 
Ki�j�

�r� � after
renormalization with 
Kij

�r−1�� before renormalizations. The
superscript of Kij

�r� denotes the step of renormalization. For
example, the explicit recursion relations for the b=2 self-
dual hierarchical lattice in Fig. 5 are

x0
�r� = �


�i�
exp�K01

�r−1��1 + K02
�r−1��2 + K12

�r−1��1�2 + K13
�r−1��1

+ K23
�r−1��2� , �5�

x0
�r�e−2K03

�r�
= �


�i�
exp�K01

�r−1��1 + K02
�r−1��2 + K12

�r−1��1�2

− K13
�r−1��1 − K23

�r−1��2� . �6�

Here x0
�r�, which we call the principal Boltzmann factor, ex-

presses the local �bond� Boltzmann factor for parallel spins
on the ends of renormalized bonds. The recursion relations
�5� and �6� yield the renormalized principal Boltzmann factor
and that for antiparallel spins on the ends of renormalized
bonds, respectively. The summation in the exponent is over
all interactions in the unit cell. The indices of couplings ex-
press bonds as labeled in Fig. 5.

The partition function Zs for a hierarchical lattice after
s-step construction is generally evaluated as

Zs�
Kij
�0��� � x0

�0�NB
�s�

zs�
Kij
�0��� = x0

�1�NB
�s−1�

zs−1�
Kij
�1���

= x0
�2�NB

�s−2�

zs−2�
Kij
�2��� = ¯ = x0

�s�NB
�0�

z0�
Kij
�s��� ,

�7�

where NB
�s� represents the number of bonds at the sth step of

construction and zs−r is the partition function after r-step

renormalization, which is normalized by x0
�r�NB

�s−r�

, namely

zs−r��x0
�r��−NB

�s−r�
Zs. Because of this normalization, the value

of zs−r is simply 2Ns−r in the high-temperature limit and be-
comes 2 in the low-temperature limit �9�. Here Ns−r denotes
the number of sites after r steps of renormalization for s
steps of construction. In addition, one notices that the num-
ber of the construction steps s decreases effectively at each
step of renormalization.

We obtain the free energy per site as

− �fs�
Kij
�0��� =

NB
�0�

Ns
log x0

�s��
Kij
�s��� +

1

Ns
log z0�
Kij

�s��� ,

�8�

where NB
�0�=1. Therefore the free energy per site of a model

on a hierarchical lattice is generally written as, in the ther-
modynamic limit s→�,

lim
s→�

− �fs�
Kij
�0��� = lim

s→�

 1

Ns
log x0

�s��
Kij
�s���

+
1

Ns
log z0�
Kij

�s���� . �9�

The last term in this equation can be calculated for the peri-

1-(b)1-(a)

2-(b)2-(a)

3-(b)3-(a)
FIG. 1. Three mutually dual pairs of hierarchical lattices inves-

tigated in Ref. �12�. The numbers 1–3 denote these three mutually
dual pairs of hierarchical lattices studied in the presented paper.
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odic and free boundary conditions by the fact that the hier-
archical lattice becomes a single bond after sufficient steps of
the renormalization as

z0�
Kij
����� = 
2 �periodic�

2
1 + exp�− 2Kij
����� �free� .

� �10�

This is negligible due to N�→� for the case of the periodic
boundary condition. This choice of the boundary condition
does not affect the results. Therefore only the first term
log x0

��� in Eq. �9� is significant. This quantity is a function of
renormalized couplings 
Kij

����, which in general obeys a non-
trivial distribution in quenched random systems. In the next
section, we observe the flow of the renormalized couplings

Kij

���� using a stochastic technique by Nobre �13� to investi-
gate phase transitions on the hierarchical lattices and esti-
mate the location of the multicritical point for the �J Ising
model and the Gaussian model.

IV. QUENCHED SYSTEMS

In Nobre’s implementation of renormalization group for
disordered systems on hierarchical lattices �13�, we first pro-
duce a sample pool of interactions, following the initial dis-
tribution. For example, our analysis starts from preparation

of a pool following the �J or Gaussian distribution. Then we
randomly choose bonds from this sampling pool and form a
unit cell of the hierarchical lattice under consideration. In
this unit cell, we carry out the renormalization calculation
using adequate equations such as Eqs. �5� and �6� and obtain
renormalized interactions. Iterating this procedure for the
other bonds, we obtain another pool consisting of the renor-
malized interactions, which follows a different type of distri-
bution function of the renormalized interactions. Using this
renormalized distribution, we reproduce a pool of the renor-
malized interactions and iterate the above procedures while
observing the moments of interactions �Kij� and �Kij

2 � at ev-
ery step where �¯� means the configurational average over
the renormalized distribution. If �Kij� goes to infinity, it is
considered that the renormalization flow of the sampling
pool is attracted toward the ferromagnetic fixed point in the
interaction space. On the other hand, when �Kij� goes to zero,
two possible scenarios are considered. To distinguish two
different scenarios, we have to observe �Kij

2 �. If this moment
goes to infinity, it is a signal that the sampling pool is at-
tracted toward the spin-glass fixed point. Otherwise, we find
a signal that �Kij

2 � falls to zero, then the sampling pool goes
to the paramagnetic fixed point. An additional scenario is
seen in the present study, which has not been investigated by
Nobre’s method yet. As shown in Fig. 2, the hierarchical

4-(b)4-(a) 7-(b)7-(a)

5-(b)5-(a) 8-(b)8-(a)

6-(b)6-(a)

FIG. 2. Additional mutually
dual pairs of hierarchical lattices
studied in the presented paper.
The solid lines denote bonds
replaced by the renormalized
bonds at each renormalization.
Bonds shown dashed stay
unrenormalized.
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lattices of type 5, 6, and 8 include a part of interactions
following the initial distribution function in the unit cell �see
the dashed lines�. These interactions induce the possibility of
a fixed line like the Kosterlitz-Thouless �KT� phase that the
sampling pool goes toward neither �Kij�→� nor �Kij�→0
�23�. This fixed line can be detected by �Kij

�n�−Kij
�n−1��→0.

We introduced 2�106 bonds as the set of a sampling
pool, and prepared 1000 sampling pools in the present study,
except for the lattice number 5, �a� and �b� in Fig. 2, whose
sampling pool has 1.8�105 bonds. We observed the result-
ing phases after 30 steps of renormalization iterations. For
the hierarchical lattices with the possibility of a KT transi-
tion, we carry out the renormalization of 50 more steps than
the other hierarchical lattices. Because the investigations are
carried out for the hierarchical lattices of finite size and with
a finite number of bonds in the sampling pool, we cannot

find a clear boundary expressing the phase transition. In fact,
for a given lattice, some sampling pools go to the ferromag-
netic fixed point �or KT phase� and others are attracted to-
ward the paramagnetic fixed point �or KT phase�. We ob-
tained the probabilities of appearance of each phase as a
result of this method. For example, the results for the �J
Ising model and Gaussian model on Nobre’s self-dual hier-
archical lattice depicted in Fig. 3 are shown in Fig. 6.

For the other hierarchical lattices, we obtain similar re-
sults to these plots. We explain the obtained plot in Fig. 7
below, which concerns the error bars for these investigations.
In the thermodynamic limit, all the plots as in Fig. 6 become
step functions. However, we investigated the finite-size hier-
archical lattices. The slopes of all the plots are finite. We
have checked these finite-size effects as shown in Fig. 7.
From these analyses, the final error bars have been chosen to
be pc /�NB for the �J Ising model and J0 /J2�NB for the
Gaussian model, where NB is the number of bonds of the
hierarchical lattice.

The results for the �J model are given in Tables II and
III, and those for the Gaussian model are in Table IV. We
show the values of the binary entropy H�p� for comparison
with the conjecture. For the Gaussian Ising model, we also
give the values of HG�J0 /J2� for the self-dual hierarchical
lattices. Similarly to the case of the �J Ising model, it can be
shown that the summation of both values of HG�J0 /J2�A��
and HG�J0 /J2�B�� should be unity for the mutually dual
pairs. We show such values for comparison in Table IV. We

TABLE II. The locations of the multicritical points for the �J
Ising model on the self-dual hierarchical lattices. Also shown are
the values 2H�pc�, which should be unity according to the
conjecture.

Lattice pc 2H�pc�

b=2 self-dual 0.8915�6� 0.991�4�
b=3 self-dual 0.8903�2� 0.998�1�
b=4 self-dual 0.8892�6� 1.005�4�
b=5 self-dual 0.8895�6� 1.003�4�
b=6 self-dual 0.8890�6� 1.006�4�
b=7 self-dual 0.8891�6� 1.005�4�
b=8 self-dual 0.8889�6� 1.006�4�

FIG. 3. Self-dual hierarchical lattices. After renormalization of
bond moving and decimation, the self-dual hierarchical lattices be-
come the structure like the Wheatstone bridge.

FIG. 4. Two renormalization steps. The left-hand side is bond
moving. The right-hand side is decimation.

FIG. 5. Construction of one of the self-dual hierarchical lattices.
The number s denotes the construction step.
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express here pairs of the locations of the multicritical points
as J0 /J2�A� and J0 /J2�B�. Seeing these results, we confirm
slight but non-negligible deviations from unity for both cases
of the �J and the Gaussian models. We find the general
tendency that the difference from unity for the Gaussian
Ising model is smaller than in the �J Ising model.

V. REPLICATED SYSTEMS

There are slight differences between the results by the
conjecture and the numerical data by the renormalization
group analysis for the multicritical points of quenched sys-
tems as shown in the previous section. We examine the con-
jecture for replicated systems on the self-dual hierarchical
lattices in this section. Because the conjecture is based on the
duality and the replica method �7–11�, it is expected that we
find such discrepancies also for replicated systems with the
replica number n of natural numbers as in the quenched sys-
tem �n→0�.

If the partition function is a single-variable function, we
can obtain the transition point as the fixed point of the dual-
ity. Then equation x0�K�=x0

��K� gives the exact transition
point, where x0�K� and x0

��K� are the original and dual prin-
cipal Boltzmann factors �7–11�. We illustrate this point by
the pure Ising model as

x0�K� = eK, �11�

x0
��K� =

eK + e−K

�2
. �12�

By equating x0�K� and x0
��K�, we find the transition point

e−2Kc =�2−1 for the pure Ising model on the self-dual square
lattice. We assume that the equation x0�K�=x0

��K� is also sat-
isfied at the multicritical point for the replicated systems as
well as for the quenched system �n→0�, though the repli-
cated systems have complicated interactions �7–11�.

TABLE III. The locations of the multicritical points for the �J
Ising model on mutually dual pairs of the hierarchical lattices. The
results for lattices numbered 1–3 reproduce the results by Hincze-
wski and Berker.

Lattice p1 p2 H�p1�+H�p2�

1 0.9338�7� 0.8265�6� 1.017�4�
2 0.8149�6� 0.9487�7� 0.983�4�
3 0.7526�5� 0.9720�7� 0.991�5�
4 0.8712�6� 0.9079�6� 0.998�4�
5 0.8700�6� 0.9081�7� 1.000�4�
6 0.9337�7� 0.8266�6� 1.017�4�
7 0.9084�6� 0.8678�6� 1.005�4�
8 0.9065�6� 0.8686�6� 1.009�4�
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FIG. 6. Results for the �J �upper panel� and Gaussian �lower
panel� Ising models along the Nishimori line on the self-dual hier-
archical lattice with b=3, see Fig. 3. The conjecture states that the
multicritical points are located at pc=0.889 972 and J0 /J2

=1.021 27, respectively. The white square denotes the probability of
the paramagnetic phase and the black one represents that of the
ferromagnetic phase. The error bars represent 1 /�1000 reflecting
the number of the sampling pools.
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FIG. 7. Size effect for the �J Ising model on the self-dual
hierarchical lattice with b=3. The black and white marks denote the
probabilities of the paramagnetic and ferromagnetic phases, respec-
tively. The symbols � and � are for 103 sampling pools with 106

bonds, � and � are for those with 5�106 bonds, and � and � are
with 9�106 bonds.
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Let us set K=Kp, which is the condition of the Nishimori
line, for the replicated �J Ising model. The quantity Kp is
defined as e−2Kp = �1− p� / p. Both of the principal Boltzmann
factors are then given as �7,8�

x0�K� = 2 cosh
�n + 1�K� , �13�

x0
��K� = 2n/2 coshn K . �14�

Equation x0�K�=x0
��K� gives the conjecture �2� in the limit

n→0. Validity of this conjecture can be rigorously shown for
n=1 and 2, and for n=3 the same has been numerically
confirmed for the square lattice �8�. It is worthwhile to ex-
amine whether x0�K�=x0

��K� is satisfied or not at the multi-
critical point for the replicated �J Ising model on the self-
dual hierarchical lattices. Because the replicated �J Ising
model does not have any randomness for couplings, which
has been taken into consideration by the configurational av-
erage, we can derive directly the multicritical points by
evaluating recursion relations such as in Eqs. �5� and �6�.

We obtained the locations of the multicritical points on
several self-dual hierarchical lattices from b=2 to 6 with the
replica number n=1–4. The results are shown and compared
with the predictions by the conjecture x0�K�=x0

��K� in Table
V.

The results obtained in the previous section for the
quenched system �n→0� are also shown for comparison.
Equation x0�K�=x0

��K� gives the exact answer for n=1 and 2.
For n=3 and 4, the multicritical point locates slightly away
from the results of the conjecture. Therefore the assumption
of the validity for the conjecture is violated for the self-dual
hierarchical lattices. Considering b→�, we find that the con-
jecture does not always work well on this self-dual hierarchi-
cal lattice, since the system becomes an effectively one-
dimensional chain without finite-temperature transition in the
limit b→� although the conjecture gives the results inde-
pendent of b.

VI. IMPROVEMENT OF THE CONJECTURE

In this section we propose an improvement of the conjec-
ture, which reduces discrepancies observed in Table V. We
here consider the partition function for the replicated �J
Ising model and its dual one and discuss their relationship
following Ref. �9�. The partition function for the replicated
�J Ising model on the Nishimori line is a multivariable
function of the Boltzmann factors as

Z�K� = x0�K�NBz�u1,u2, . . . ,un� , �15�

where the ur are the relative Boltzmann factors defined as

ur�K� =
xr�K�
x0�K�

=
cosh
�n + 1 − 2r�K�

cosh
�n + 1�K�
. �16�

Here r denotes the number of antiparallel pairs among the n
pairs. The duality gives the following relationship between
the original and dual partition functions �9�:

TABLE IV. The locations of the multicritical points for the
Gaussian model on the b=3 self-dual and mutually dual pairs of the
hierarchical lattices.

Lattice J0 2HG�J0�

b=3 self-dual 1.0209�3� 1.0011�4�

Lattice J0�A� J0�B� HG�J0�A��+HG�J0�B��

1 0.7605�5� 1.3174�9� 1.0005�8�
2 0.7655�5� 1.3118�9� 1.0000�8�
3 0.5569�4� 1.6151�11� 0.9999�7�
4 0.9704�7� 1.0730�8� 1.0009�10�
5 0.9701�7� 1.0733�8� 1.0009�10�
6 1.3175�9� 0.7606�5� 1.0003�8�
7 1.1450�8� 0.9040�6� 1.0001�9�
8 1.1436�8� 0.9055�6� 1.0005�9�

TABLE V. Differences between pc by the conjecture equation
x0�K�=x0

��K� and pnumerical by the exact renormalization analysis for
the n-replicated �J Ising model on several self-dual hierarchical
lattices. For n→0, pnumerical denotes the results obtained by Nobre’s
technique.

b n pc pnumerical pc− pnumerical

2 n→0 0.889972 0.8915�6� −0.0015�6�
1 0.821797 0.821797 0

2 0.788675 0.788675 0

3 0.769563 0.768851 0.000713

4 0.757348 0.755451 0.001897

3 n→0 0.889972 0.8903�2� −0.0003�2�
1 0.821797 0.821797 0

2 0.788675 0.788675 0

3 0.769563 0.769022 0.000542

4 0.757348 0.755942 0.001406

4 n→0 0.889972 0.8892�6� 0.0007�6�
1 0.821797 0.821797 0

2 0.788675 0.788675 0

3 0.769563 0.769649 −0.000086

4 0.757348 0.757763 −0.000415

5 n→0 0.889972 0.8895�6� 0.0004�6�
1 0.821797 0.821797 0

2 0.788675 0.788675 0

3 0.769563 0.7705020 −0.000939

4 0.757348 0.7601328 −0.002785

6 n→0 0.889972 0.8890�6� 0.0010�6�
1 0.821797 0.821797 0

2 0.788675 0.788675 0

3 0.769563 0.771376 −0.001813

4 0.757348 0.762313 −0.004965
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x0�K�NBz�u1,u2, . . . ,un� = x0
��K�NBz�u1

�,u2
�, . . . ,un

�� , �17�

where the ur
� are the dual relative Boltzmann factors defined

as

ur
��K� = 
tanhr K �r = even�

tanhr+1 K �r = odd� .
� �18�

Figure 8 shows the relationship between the curves
�u1�K� ,u2�K� , . . . ,un�K�� �the thin curve going through pc�
and �u1

��K� ,u2
��K� , . . . ,un

��K�� �the dashed line�.
For convenience, we show the projections on the two-

dimensional plane �u1 ,u2�. For T→0 �K→��, ur�K�→0 for
any r, corresponding to the point F in Fig. 8. As T changes
from 0 to �, the point representing �u1�K� ,u2�K� , . . . ,un�K��
moves toward the point P along the thin line in Fig. 8. Then
the corresponding dual point �u1

��K� ,u2
��K� , . . . ,un

��K��
moves along the dashed line in the opposite direction from P
to F.

If we were to consider a model with a single-variable
partition function, the thin curve would overlap the dashed
line, a fact which would be reflected in the relation ur

��K�
=ur�K��. Solving this relation, we obtain the duality relation
for the coupling constant K��K�. For example, the pure Ising
model has the reduced Boltzmann factors as u1�K�=e−2K

and u1
��K�=tanh K. We obtain the duality relation e−2K�

=tanh K from u1
��K�=u1�K��. However, the replicated �J

Ising model is given by the multivariable partition function
of �u1�K� ,u2�K� , . . . ,un�K��. The thin curve
�u1�K� ,u2�K� , . . . ,un�K�� does not coincide with the dashed
curve �u1

��K� ,u2
��K� , . . . ,un

��K��. Therefore we cannot iden-
tify the critical point with the fixed point of duality.

A different point of view from the renormalization group
helps us proceed further. Let us notice two facts concerning
renormalization group transformation. �i� The critical point is
attracted toward the unstable fixed pint. �ii� The partition
function does not change its functional form by renormaliza-
tion for hierarchical lattice; only the values of arguments
change. Therefore the renormalized system also has a repre-
sentative point in the same space �u1�K� ,u2�K� , . . . ,un�K�� as
in Fig. 8, with the renormalization flow following the arrows
emanating from pc and dc to C, ph and dl to P, and pl and dh
to F. We express such a development of relative Boltzmann
factors at each renormalization step on the n-dimensional
hyperspace as �u1

�r� ,u2
�r� , . . . ,un

�r��, where the superscript

means the number of renormalization steps. The renormal-
ization flow from the critical point pc reaches the fixed point
C, �u1

��� ,u2
��� , . . . ,un

����. On the other hand, there is the point
dc related to pc by the duality. We expect that the renormal-
ization flow from this dual point dc also reaches the same
fixed point C because pc and dc represent the same critical
point due to Eq. �17�.

Considering the above property of the renormalization
flow as well as the duality, we find that the duality relates
two trajectories of the renormalization flow from pc and from
dc, tracing the renormalization flows at each renormalization.
In other words, after a sufficient number of renormalization
steps, the thin curve representing the original system and the
dashed curve for the dual system both approach the common
renormalized system depicted as the bold line in Fig. 8,
which goes through the fixed point C.

It is expected that the partition function therefore becomes
a single-variable function described by the bold curve. This
fact enables us to find the duality relation and identify the
multicritical point by the following equation:

x0
����K� = x0

�����K� , �19�

similarly to x0�K�=x0
��K� for the pure Ising model. We there-

fore have to evaluate Eq. �19�, not the relation x0�K�
=x0

��K� for the unrenormalized, bare quantities, to obtain the
precise location of the multicritical point on the hierarchical
lattices. Equation �19� is expected to predict the exact loca-
tion of the multicritical point for the hierarchical lattice.

It should be noticed that the relation x0�K�=x0
��K� predicts

values very close to numerical estimates in many cases of
regular lattices as indicated in Table I. This means that the
effects of renormalization are not large for those systems. If
we regard the relation x0�K�=x0

��K� as the zeroth approxima-
tion for the location of the multicritical point, it is expected
that the relation x0

�1��K�=x0
��1��K� is the first approximation

and leads to more precise results than the relation x0�K�
=x0

��K� does. We therefore propose the first-approximation
equation x0

�1�=x0
��1� as the improved conjecture. We evaluate

the performance of this approximation in the next section for
hierarchical lattices.

VII. RESULTS BY THE IMPROVED CONJECTURE

In this section, we report the results by the improved con-
jecture x0

�1��K�=x0
��1��K� and evaluate its performance com-

pared with the conventional conjecture. The relation x0�K�
=x0

��K� of the conventional conjecture yields an equation that
the binary entropy H�p� equals to 1/2 for self-dual hierarchi-
cal lattices as in Eq. �2�. Similarly to this relation, the im-
proved conjecture x0

�1��K�=x0
��1��K� gives an equation in

terms of the binary entropy given by the values of the renor-
malized couplings as described below. After one-step renor-
malization, we obtain again the replicated Ising model on the
hierarchical lattice with the renormalized couplings 
Kij

�1��
and their distribution function P�1��Kij�. Here the renormal-
ized quantities are determined by the initial condition. The
original and dual principal Boltzmann factors for the repli-
cated Ising model after one-step renormalization are given as

FIG. 8. A schematic picture to consider the renormalization flow
and the duality for the replicated �J Ising model.
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x0
�1��K� =	 dKijP

�1��Kij�enKij , �20�

x0
��1��K� =	 dKijP

�1��Kij�� eKij + e−Kij

�2
�n

, �21�

where the distribution function is given by, with the cou-
plings 
Kij

�1�� obtained by Eqs. �5� and �6�,

P�1��Kij� =	 
�
unit

dKij
�0�P�Kij

�0�����Kij − Kij
�1��
Kij

�0���� .

�22�

The product runs over the bonds on the unit cluster of the
hierarchical lattice. Using these principal Boltzmann factors,
we take the leading term of the replica number n→0 of the
equation x0

�1��K�=x0
��1��K� and obtain the improved conjec-

ture for the quenched system as

	 dKijP
�1��Kij�log2
1 + exp�− 2Kij�� =

1

2
. �23�

The left-hand side of this equation will be written as H�1��p�.
Equation �23� gives the results for the replica number n
→0 shown in Table VI. Similarly, we can obtain an equation
to predict the multicritical point for the replicated �J Ising
model with a finite replica number n, whose solutions for n
=1–4 also shown in Table VI. All results are in excellent
agreement with the numerical ones within their error bars.
Comparison of Table VI with Table V clearly indicates sig-
nificant improvements. We also find the improved conjecture
gives results depending on the feature of each hierarchical
lattice because the predictions for the self-dual hierarchical
lattice are different from each other, which was not the case
before as seen in Table V.

We can also see the performance of the improved conjec-
ture from another point of view. We can predict the phase
boundary by the conventional conjecture if we do not restrict
ourselves to the Nishimori line Kp=K. The well-known tran-

sition point Tc=2.269 19 for the pure Ising model is exactly
reproduced by the conventional conjecture. However, except
for this transition point, the conventional conjecture fails to
derive the precise phase boundary especially below the
Nishimori line as seen in Fig. 9 because the phase boundary
of the �J Ising model is expected to be vertical or slightly
reentrant below the multicritical point �4,5,13,24�.

We find also inaccuracy of the conventional conjecture in
the slope of the phase boundary at the transition point of the
pure Ising model given as

1

Tc
�dT

dp
�

T=Tc

= 3.432 94. �24�

However, this value is estimated as 3.23�3� by Nobre’s
method �13� on the b=3 self-dual hierarchical lattice and as
3.209 by the exact perturbation for the square lattice �25�.
The improved conjecture, on the other hand, yields for b
=3

TABLE VI. The results by the improved conjecture x0
�1��K�

=x0
��1��K�.

b n pc pnumerical pc− pnumerical

2 0 0.892025 0.8915�6� −0.0005�6�
1 0.821797 0.821797 0

2 0.788675 0.788675 0

3 0.769048 0.768851 0.000197

4 0.755986 0.755451 0.000535

3 0 0.890340 0.8903�2� 0.0000�2�
1 0.821797 0.821797 0

2 0.788675 0.788675 0

3 0.769138 0.769022 0.000116

4 0.756250 0.755942 0.000308

4 0 0.889204 0.8892�6� 0.0000�6�
1 0.821797 0.821797 0

2 0.788675 0.788675 0

3 0.769629 0.769649 −0.000020

4 0.757619 0.757763 −0.000144

5 0 0.889522 0.8895�6� 0.0000�6�
1 0.821797 0.821797 0

2 0.788675 0.788675 0

3 0.769968 0.770502 −0.000534

4 0.758461 0.760133 −0.001672

6 0 0.889095 0.8890�6� 0.0000�6�
1 0.821797 0.821797 0

2 0.788675 0.788675 0

3 0.769947 0.771376 −0.001429

4 0.758300 0.762313 −0.004013

0.88 0.9 0.92 0.94 0.96 0.98
p

0.5

1.

1.5

2.

2.5
T

FIG. 9. The phase boundary by the conventional and improved
conjectures for a self-dual hierarchical lattice with b=3. The verti-
cal axis is the temperature, and the horizontal axis is the probability
for Jij =J�0 of the �J Ising model. The bold dashed line is by the
conventional conjecture and the bold solid line is by the improved
conjecture. The thin dashed line is the Nishimori line.
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1

Tc
�dT

dp
�

T=Tc

= 3.307 12. �25�

This value is closer to 3.23�3�. Also the phase boundary be-
low the Nishimori line is modified as moving toward the p
axis as in Fig. 9. Thus the improved conjecture works better
than the conventional conjecture for describing the phase
boundary.

The improved conjecture also succeeds in leading to the
relation between the multicritical points on the mutually dual
pairs. It is straightforward to apply the improved conjecture
to the mutually dual pairs, similarly to the case of the con-
ventional conjecture �10� as

H�1��p1� + H�1��p2� = 1, �26�

where p1 and p2 denote the locations of the multicritical
points on the mutually dual pair. We estimate the values of
the left-hand side of Eq. �26� for several pairs of hierarchical
lattices in Figs. 1 and 2. The estimated results are given in
Table VII. We use the values of the locations of the multi-
critical points obtained by Nobre’s method, as in Table III, to
compare the performance of the improved conjecture with
that of the conventional conjecture H�p1�+H�p2�=1.

There are cases in which the improved conjecture agrees
with the numerical estimates for the mutually dual pairs, for
the lattices of type 1, 3, 6, 7, and 8 hierarchical lattices in
Figs. 1 and 2. Unfortunately, we find three cases for the
lattices of type 2, 4, and 5 in which the value of the left-hand
side of the relation �26� is not unity within the error bars.
However, we find impressive improvements in Table VII
compared with the previous results in Table III.

VIII. DISCUSSIONS

In the present paper, we first showed the existence of
slight differences between the conventional conjecture and
the numerical results for the locations of the multicritical
points on several hierarchical lattices. These discrepancies
for the quenched system are caused by violation of satisfac-
tion of the equation x0�K�=x0

��K� for the replicated systems.
This equation x0�K�=x0

��K� is satisfied for the case that the
partition function is written by a single variable as in the
pure Ising model. We expect that the partition function can
be written as a single-variable function after a sufficient
number of renormalization steps, considering the fact that the
plot describing the original model overlaps that of the dual
model as in Fig. 8. Based on this consideration, we proposed
the improved conjecture as the first approximation of the
exact relation to determine the critical point. Through the
derivation of the improved conjecture, one finds that the
multicritical point on the self-dual lattice is given as a special
point where the binary entropy given by the renormalized
values on the unit of the hierarchical lattice becomes one-
half. If we need the very precise location of the multicritical
point, we may use the numerical methods for the renormal-
ization group analysis to evaluate Eq. �19�.

The present study also gives a basis for the improvement
of the conjecture on regular lattices. The improved conjec-
ture for the hierarchical lattice reflects individual character-
istics of each hierarchical lattice because it includes the
renormalized couplings and corresponding distribution func-
tion, which depend on the structure of the hierarchical lattice
under consideration. Similarly to the case of such hierarchi-
cal lattices, if we adequately carry out the renormalization
for regular lattices, it should be possible to improve the con-
jecture also for regular lattices. Work in this direction is in
progress.
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